Molecular Characterization and Overexpression of VpRPW8s from Vitis pseudoreticulata Enhances Resistance to Phytophthora capsici in Nicotiana benthamiana
نویسندگان
چکیده
RPW8 genes are atypical broad-spectrum genes that provide resistance to powdery mildew, downy mildew, the cauliflower mosaic virus in Arabidopsis thaliana, and powdery mildew in tobacco. They play important roles in basal plant pathogen defense. They also provide insights into a novel disease resistance mechanism. In this study, we report on homologous RPW8 genes in Vitis pseudoreticulata. Five VpRPW8 genes were cloned; their Open Reading Frame (ORF) sequences ranged from 1994 base pairs to 2478 base pairs. They were comprised of five exons and four introns and shared 78.66% identity. Their proteins had typical conserved RPW8 and NB-LRR (the nucleotide-binding site and the leucine-rich repeats) domains (except VpRPW8-d, which lacked LRR domains). Prokaryotic expression results were consistent with predicted molecular weights. All five RPW8 genes were located in the cytoplasm. Quantitative real-time PCR (qRT-PCR) analysis showed that VpRPW8s in V. pseudoreticulata were induced by Plasmopara viticola, but nearly only VvRPW8-d genes were induced in Vitis vinifera. Furthermore, a VpRPW8 transgenic tobacco system was established. Overexpressed VpRPW8s enhanced resistance to Phytophthora capsici and VpRPW8s conferred varying degrees of resistance to Ph. capsici in Nicotiana benthamiana. Our study presents novel members of the plant RPW8 family and suggests that VpRPW8s are involved in enhanced resistance to P. viticola and Ph. capsici.
منابع مشابه
Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.
The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown th...
متن کاملTwo cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases.
Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 ...
متن کاملL-type lectin receptor kinases in Nicotiana benthamiana and tomato and their role in Phytophthora resistance
Membrane-bound receptors play crucial roles as sentinels of plant immunity against a large variety of invading microbes. One class of receptors known to be involved in self/non-self-surveillance and plant resistance comprises the L-type lectin receptor kinases (LecRKs). Previously, we reported that several Arabidopsis LecRKs play a role in resistance to Phytophthora pathogens. In this study, we...
متن کاملMolecular responses of Phytophthora capsici-challenged cucumber (Cucumis sativus L.) plants as influenced by resistance inducer application
Phytophthora species are considered as the major cause of several plant diseases resulting in huge yield losses in agricultural crops. Despite years of effort to develop Phytophthora resistance varieties, there is no reports of a resistant cucumber variety. In this study, the effect of concomitant application of potassium phosphite (KPhi) and chitosan on some physiological and molecular respons...
متن کاملRNA-Seq Reveals Infection-Related Gene Expression Changes in Phytophthora capsici
Phytophthora capsici is a soilborne plant pathogen capable of infecting a wide range of plants, including many solanaceous crops. However, genetic resistance and fungicides often fail to manage P. capsici due to limited knowledge on the molecular biology and basis of P. capsici pathogenicity. To begin to rectify this situation, Illumina RNA-Seq was used to perform massively parallel sequencing ...
متن کامل